238 research outputs found

    Management of Parkinson's disease

    Get PDF
    Parkinson’s disease has a wide variety of motor and non-motor symptoms. Treatment aims to control the patient’s symptoms by replenishing the dopaminergic system with levodopa or dopamine agonists. Monoamine oxidase B inhibitors are also effective first-line drugs. Keeping symptoms under continual control early in the course of the disease may have beneficial effects as Parkinson’s disease progresses. Therapy is tailored to each patient’s response to the drugs and their ability to tolerate them. Limited responses of motor and many non-motor symptoms may require the addition of other treatments. The adverse effects of drugs used in the treatment of Parkinson’s disease are usually reversible. Symptom fluctuations in response to regular medication are an indication for specialist referral

    Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson's disease

    Get PDF
    In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet Process mixture (DPM) model for this task. This model is defined by the placement of the Dirichlet Process (DP) on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson’s disease (PD) is considered, with symptom profiles collected using the Unified Parkinson’s Disease Rating Scale (UPDRS). Clustering, Dirichlet Process mixture, Parkinson’s disease, UPDRS

    Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s Disease: A systematic review

    Get PDF
    Background Postural instability and gait disability threaten the independence and well-being of people with Parkinson’s disease and increase the risk of falls and fall-related injuries. Prospective research has shown that commonly-used clinical assessments of balance and walking lack the sensitivity to accurately and consistently identify those people with Parkinson’s disease who are at a higher risk of falling. Wearable sensors provide a portable and affordable alternative for researchers and clinicians who are seeking to objectively assess movements and falls risk in the clinical setting. However, no consensus currently exists on the optimal placements for sensors and the best outcome measures to use for assessing standing balance and walking stability in Parkinson’s disease patients. Hence, this systematic review aimed to examine the available literature to establish the best sensor types, locations and outcomes to assess standing balance and walking stability in this population. Methods Papers listed in three electronic databases were searched by title and abstract to identify articles measuring standing balance or walking stability with any kind of wearable sensor among adults diagnosed with PD. To be eligible for inclusion, papers were required to be full-text articles published in English between January 1994 and December 2014 that assessed measures of standing balance or walking stability with wearable sensors in people with PD. Articles were excluded if they; i) did not use any form of wearable sensor to measure variables associated with standing balance or walking stability; ii) did not include a control group or control condition; iii) were an abstract and/or included in the proceedings of a conference; or iv) were a review article or case study. The targeted search of the three electronic databases identified 340 articles that were potentially eligible for inclusion, but following title, abstract and full-text review only 26 articles were deemed to meet the inclusion criteria. Included articles were assessed for methodological quality and relevant data from the papers were extracted and synthesized. Results Quality assessment of these included articles indicated that 31% were of low methodological quality, while 58% were of moderate methodological quality and 11% were of high methodological quality. All studies adopted a cross-sectional design and used a variety of sensor types and outcome measures to assess standing balance or walking stability in people with Parkinson’s disease. Despite the typically low to moderate methodological quality, 81% of the studies reported differences in sensor-based measures of standing balance or walking stability between different groups of Parkinson’s disease patients and/or healthy controls. Conclusion These data support the use of wearable sensors for detecting differences in standing balance and walking stability between people with PD and controls. Further high-quality research is needed to better understand the utility of wearable sensors for the early identification of Parkinson’s disease symptoms and for assessing falls risk in this population

    Imposed faster and slower walking speeds influence gait stability differently in Parkinson fallers

    Get PDF
    Objective To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Design Cross-sectional cohort study. Setting General community. Participants Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Interventions Not applicable. Main Outcome Measures Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Results Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. Conclusions The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD

    Dynamic balance control during stair negotiation for older adults and people with Parkinson disease

    Get PDF
    It is well understood that stability during ambulation is reliant upon appropriate control of the trunk segment, but research shows that the rhythmicity of this segment is significantly reduced for people with Parkinson's disease (PD). Given the increased risk associated with stair ambulation, this study investigated whether people with PD demonstrate poorer trunk control during stair ambulation compared with age-matched controls. Trunk accelerations were recorded for twelve PD patients and age-matched controls during stair ascent and descent. Accelerations were used to derive measures of harmonic ratios and root mean square (RMS) acceleration to provide insight into the rhythmicity and amplitude of segmental motion. Compared with what is typically seen during level-ground walking, gait rhythmicity during stair negotiation was markedly reduced for older adults and people with PD. Furthermore, both groups exhibited significantly poorer trunk movements during stair descent compared to stair ascent, suggesting that both populations may face a greater risk of falling during this task. As stair negotiation is a common activity of daily life, the increased risk associated with this task should be considered when working with populations that have an increased risk of falling

    A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing and postural instability are disabling features of Parkinsonian disorders, treatable with pedunculopontine nucleus stimulation. Both features are considered deficits of proximal and axial musculature, innervated predominantly by reticulospinal pathways and tend to manifest when gait and posture require adjustment. Adjustments to gait and posture are amenable to pre-preparation and rapid triggered release. Experimentally, such accelerated release can be elicited by loud auditory stimuli—a phenomenon known as ‘StartReact’. We observed StartReact in healthy and Parkinsonian controls. However, StartReact was absent in Parkinsonian patients with severe gait freezing and postural instability. Pedunculopontine nucleus stimulation restored StartReact proximally and proximal reaction times to loud stimuli correlated with gait and postural disturbance. These findings suggest a relative block to triggered, pre-prepared movement in gait freezing and postural instability, relieved by pedunculopontine nucleus stimulation

    Plasma biomarkers inclusive of α-synuclein/amyloid-beta40 ratio strongly correlate with Mini-Mental State Examination score in Parkinson's disease and predict cognitive impairment

    Get PDF
    Plasma biomarkers for Parkinson’s disease (PD) diagnosis that carry predictive value for cognitive impairment are valuable. We explored the relationship of Mini-Mental State Examination (MMSE) score with plasma biomarkers in PD patients and compared results to vascular dementia (VaD) and normal controls. The predictive accuracy of an individual biomarker on cognitive impairment was evaluated using area under the receiver operating characteristic curve (AUROC), and multivariate logistic regression was applied to evaluate predictive accuracy of biomarkers on cognitive impairment; 178 subjects (41 PD, 31 VaD and 106 normal controls) were included. In multiple linear regression analysis of PD patients, α-synuclein, anti-α-synuclein, α-synuclein/Aβ40 and anti-α-synuclein/Aβ40 were highly predictive of MMSE score in both full model and parsimonious model (R2 = 0.838 and 0.835, respectively) compared to non-significant results in VaD group (R2 = 0.149) and in normal controls (R2 = 0.056). Α-synuclein and anti-α-synuclein/Aβ40 were positively associated with MMSE score, and anti-α-synuclein, α-synuclein/Aβ40 were negatively associated with the MMSE score among PD patients (all Ps < 0.005). In the AUROC analysis, anti-α-synuclein (AUROC = 0.788) and anti-α-synuclein/Aβ40 (AUROC = 0.749) were significant individual predictors of cognitive impairment. In multivariate logistic regression, full model of combined biomarkers showed high accuracy in predicting cognitive impairment (AUROC = 0.890; 95%CI 0.796–0.984) for PD versus controls, as was parsimonious model (AUROC = 0.866; 95%CI 0.764–0.968). In conclusion, simple combination of biomarkers inclusive of α-synuclein/Aβ40 strongly correlates with MMSE score in PD patients versus controls and is highly predictive of cognitive impairment
    • …
    corecore